skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salls, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Malware detection plays a vital role in computer security. Modern machine learning approaches have been centered around domain knowledge for extracting malicious features. However, many potential features can be used, and it is time consuming and difficult to manually identify the best features, especially given the diverse nature of malware. In this paper, we propose Neurlux, a neural network for malware detection. Neurlux does not rely on any feature engineering, rather it learns automatically from dynamic analysis reports that detail behavioral information. Our model borrows ideas from the field of document classification, using word sequences present in the reports to predict if a report is from a malicious binary or not. We investigate the learned features of our model and show which components of the reports it tends to give the highest importance. Then, we evaluate our approach on two different datasets and report formats, showing that Neurlux improves on the state of the art and can effectively learn from the dynamic analysis reports. Furthermore, we show that our approach is portable to other malware analysis environments and generalizes to different datasets. 
    more » « less